
1

Unit-4
The Transport Layer

The transport layer in the TCP/IP suite is located between the application layer and
the network layer. It provides services to the application layer and receives services
from the network layer. The transport layer acts as a connection between a client
program and a server program, a process-to-process connection.
The transport layer is the heart of the TCP/IP protocol suite; it is the end-to-end
logical vehicle for transferring data from one point to another in the Internet.

A transport-layer protocol provides for logical communication between application
processes running on different hosts. By logical communication, it is as if the hosts
running the processes were directly connected.
On the sending side, the transport layer converts the application-layer messages it
receives from a sending application process into transport-layer packets, known as
transport-layer segments.

1. Connectionless Transport: UDP
UDP is a connectionless protocol. No connection needs to be established between
the source and destination before you transmit data. It is an unreliable and
connectionless protocol.

As many applications are better suited for UDP for the following reasons:
1. Finer application level control over what data is sent and when
2. No connection establishment
3. No connection state
4. Small packet header overhead

Finer application level control over what data is sent and when: As soon as an
application process passes data to UDP, UDP will package the data inside a UDP
segment and immediately pass the segment to the network layer.
Real-time applications often require a minimum sending rate, do not want to overly
delay segment transmission, and can tolerate some data loss, TCP’s service model
is not particularly well matched to these applications’ needs. These applications can
use UDP.

No connection establishment: TCP uses a three-way handshake before it starts to
transfer data. UDP just blasts away without any formal preliminaries. Thus UDP does
not introduce any delay to establish a connection. This is probably the principal
reason why DNS runs over UDP rather than TCP – DNS would be much slower if it
ran over TCP.

No connection state: UDP does not maintain connection state and does not track
any of these parameters. For this reason, a server devoted to a particular application
can typically support many more active clients when the application runs over UDP
rather than TCP.

2

Small packet header overhead: The TCP segment has 20 bytes of header overhead
in every segment, whereas UDP has only 8 bytes of overhead.

� UDP segment structure
The Internet protocol suite supports a connectionless transport protocol called UDP
(User Datagram Protocol). UDP provides a way for applications to send
encapsulated IP datagrams without having to establish a connection.
UDP transmits segments consisting of an 8-byte header followed by the payload.
The header is shown in Fig. The two ports serve to identify the endpoints within the
source and destination machines. When a UDP packet arrives, its payload is handed
to the process attached to the destination port.

Fig: The UDP header
 Source port number: it is a 16-bits field. This field defines the source port number.
 Destination port number: it is a 16-bits field. This field defines the Destination
port number.
 Total length: it is a 16-bits field. The total length field includes the 8-byte header
and the data. The minimum length is 8 bytes, to cover the header. The maximum
length is 65,535 bytes.
 Checksum: In checksum error detection scheme, the data is divided into k
segments each of m bits.
� In the source, the segments are added using 1’s complement arithmetic to get
the sum. The sum is complemented to get the checksum.
� The checksum segment is sent along with the data segments.
� At the destination, all received segments are added using 1’s complement
arithmetic to get the sum. The sum is complemented.
� If the result is zero, the received data is accepted; otherwise discarded.

� UDP checksum
The UDP checksum provides for error detection. That is, the checksum is used to
determine whether bits within the UDP segment have been altered as it moved from
source to destination. UDP at the sender side performs the 1s complement of the
sum of all the 16-bit words in the segment, with any overflow encountered during the
sum being wrapped around. This result is put in the checksum field of the UDP
segment.
As an example, suppose that we have the following three 16-bit words:

3

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is
0110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives
1011101110110101
1000111100001100

0100101011000010
Note that this last addition had overflow, which was wrapped around. The 1s
complement is obtained by converting all the 0s to 1s and converting all the 1s to 0s.
Thus the 1s complement of the sum 0100101011000010 is 1011010100111101,
which becomes the checksum.
At the receiver, all four 16-bit words are added, including the checksum. If no errors
are introduced into the packet, then clearly the sum at the receiver will be
1111111111111111. The sum is I’s complemented If one of the bits is a 0, then we
know that errors have been introduced into the packet.
UDP must provide error detection at the transport layer, on an end-end basis, if the
end-end data transfer service is to provide error detection. This is an example of the
celebrated end-end principle in system design.

2. The Internet Transport Protocols: TCP
TCP is a connection-oriented transport protocol. TCP (Transmission Control
Protocol) was specifically designed to provide a reliable end-to-end byte stream over
an unreliable internetwork.
An internetwork differs from a single network because different parts may have
wildly different topologies, bandwidths, delays, packet sizes, and other parameters.
TCP was designed to dynamically adapt to properties of the internetwork and to be
robust in the face of many kinds of failures.

� The TCP Service Model: TCP service is obtained by both the sender and the
receiver creating end points, called sockets.
Each socket has a socket number (address) consisting of the IP address of the host
and a 16-bit number local to that host, called a port.
For TCP service to be obtained, a connection must be explicitly established between
a socket on one machine and a socket on another machine. The socket calls are
listed in Fig.
A socket may be used for multiple connections at the same time. Connections are
identified by the socket identifiers at both ends (socket1, socket2).

4

Fig: The socket primitives for TCP.

Port numbers : 1024 port numbers are reserved for standard services that can
usually only be started by privileged users (e.g., root in UNIX systems). They are
called well-known ports.

Fig: Some assigned ports.

E.g: 4 * 512 bytes of data is to be transmitted.
For example, if the sending process does four 512-byte writes to a TCP stream,
these data may be delivered to the receiving process as four 512-byte chunks, two
1024-byte chunks, one 2048-byte chunk, or some other way.

Fig: Four 512-byte segments sent as separate IP datagrams. (b) The 2048 bytes of data
delivered to the application

� The TCP Protocol: All TCP connections are full duplex and point to point i.e.,
multicasting or broadcasting is not supported. A TCP connection is a byte stream,
not a message stream i.e., the data is delivered as chunks.
 A key feature of TCP is that every byte on a TCP connection has its own 32-bit
sequence number.
 The basic protocol used by TCP entities is the sliding window protocol. Separate
32-bit sequence numbers are carried on packets for the sliding window position in
one direction and for acknowledgements in the reverse direction.
 When a sender transmits a segment, it also starts a timer. When the segment
arrives at the destination, the receiving TCP entity sends back a segment bearing an
acknowledgement number equal to the next sequence number it expects to receive.
 If the sender's timer goes off before the acknowledgement is received, the sender

5

transmits the segment again.
 The sending and receiving TCP entities exchange data in the form of segments.
A TCP segment consists of a fixed 20-byte header (plus an optional part) followed by
zero or more data bytes.

� The TCP Segment Header: The sending and receiving TCP entities exchange
data in the form of segments. A TCP segment consists of a fixed 20-byte header
(plus an optional part) followed by zero or more data bytes.
Every segment begins with a fixed-format, 20-byte header. The fixed header may be
followed by header options. Segments without any data are legal and are commonly
used for acknowledgements and control messages.

Fig: TCP segment format

 Source port address. This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment.
 Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment.
 Sequence number. This 32-bit field defines the number assigned to the first byte
of data contained in this segment. The sequence number tells the destination which
byte in this sequence is the first byte in the segment.
During connection establishment each party uses a random number generator to
create an initial sequence number (ISN), which is usually different in each direction.
 Acknowledgment number. This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the receiver of
the segment has successfully received byte number x from the other party, it returns
x + 1 as the acknowledgment number. Acknowledgment and data can be
piggybacked together.
 Header length. This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field is always between 5 (5 × 4 = 20) and 15 (15 × 4 = 60).
 Control. This field defines 6 different control bits or flags, as shown in Fig. One or

6

more of these bits can be set at a time.

Fig: Control field
URG: It is set to 1 if URGENT pointer is in use, which indicates start of urgent data.
ACK: It is set to 1 to indicate that the acknowledgement number is valid.
PSH: Indicates pushed data
RST: It is used to reset a connection that has become confused due to reject an
invalid segment or refuse an attempt to open a connection.
SYN: Used to establish connections.
FIN: Used to release a connection.
 Window size. This field defines the window size of the sending TCP in bytes.
Note that the length of this field is 16 bits, which means that the maximum size of
the window is 65,535 bytes.
This value is normally referred to as the receiving window (rwnd) and is determined
by the receiver.
 Checksum. This 16-bit field contains the checksum.

� In the source, the segments are added using 1’s complement arithmetic to
get the sum. The sum is complemented to get the checksum.

� The checksum segment is sent along with the data segments.
� At the destination, all received segments are added using 1’s complement

arithmetic to get the sum. The sum is complemented.
� If the result is zero, the received data is accepted; otherwise discarded.

 Urgent pointer. This 16-bit field, which is valid only if the urgent flag is set, is used
when the segment contains urgent data. It defines a value that must be added to the
sequence number to obtain the number of the last urgent byte in the data section of
the segment.
 Options. There can be up to 40 bytes of optional information in the TCP header.

� A TCP Connection: TCP is connection-oriented. A connection-oriented
transport protocol establishes a logical path between the source and destination. All
of the segments belonging to a message are then sent over this logical path.
In TCP, connection-oriented transmission requires three phases: connection
establishment, data transfer, and connection termination.
� Connection Establishment: TCP transmits data in full-duplex mode.
Three-Way Handshaking The connection establishment in TCP is called three-way
handshaking. In our example, an application program, called the client, wants to
make a connection with another application program, called the server, using TCP as
the transport-layer protocol.
 The process starts with the server. The server program tells its TCP that it is
ready to accept a connection. This request is called a passive open.
 The client program issues a request for an active open. A client that wishes to
connect to an open server tells its TCP to connect to a particular server.

7

Fig: Connection establishment using three-way handshaking
1. The client sends the first segment, a SYN segment, in which only the SYN flag is
set. This segment is for synchronization of sequence numbers. A SYN segment
cannot carry data, but it consumes one sequence number.
2. The server sends the second segment, a SYN + ACK segment with two flag bits
set as: SYN and ACK. This segment has a dual purpose. A SYN + ACK segment
cannot carry data, but it does consume one sequence number.
3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field.

� Data Transfer: After connection is established, bidirectional data transfer can
take place. The client and server can send data and acknowledgments in both
directions.
The data segments sent by the client have the PSH (push) flag set so that the server
TCP knows to deliver data to the server process as soon as they are received.
Pushing Data: The sending TCP uses a buffer to store the stream of data coming
from the sending application program. The sending TCP can select the segment size.

8

Fig: Data transfer
 The application program at the sender can request a push operation. It must
create a segment and send it immediately.
 The sending TCP must also set the push bit (PSH) to let the receiving TCP know
that the segment includes data that must be delivered to the receiving application
program.
Urgent Data: there are occasions in which an application program needs to send
urgent bytes, some bytes that need to be treated in a special way by the application
at the other end.
The solution is to send a segment with the URG bit set. The sending application
program tells the sending TCP that the piece of data is urgent.
The sending TCP creates a segment and inserts the urgent data at the beginning of
the segment.

� Connection Termination: Either of the two parties involved in exchanging data
(client or server) can close the connection, it is usually initiated by the client.
Two options for connection termination: three-way handshaking and four-way
handshaking with a half-close option.
Three-Way Handshaking: Most implementations today allow three-way handshaking
for connection termination, as shown in Figure:

Fig: Connection termination using three-way handshaking

1. In this situation, the client TCP, after receiving a close command from the client
process, sends the first segment, a FIN segment in which the FIN flag is set. The FIN
segment consumes one sequence number if it does not carry data.
2. The server TCP, after receiving the FIN segment, informs its process of the
situation and sends the second segment, a FIN + ACK segment, to confirm the
receipt of the FIN segment from the client and at the same time to announce the
closing of the connection in the other direction.
3. The client TCP sends the last segment, an ACK segment, to confirm the receipt
of the FIN segment from the TCP server.

9

Half-Close: In TCP, one end can stop sending data while still receiving data. This is
called a halfclose. Either the server or the client can issue a half-close request. It can
occur when the server needs all the data before processing can begin.

Fig: Half-close
 The data transfer from the client to the server stops. The client half-closes the
connection by sending a FIN segment. The server accepts the half-close by sending
the ACK segment.
 The server, however, can still send data. When the server has sent all of the
processed data, it sends a FIN segment, which is acknowledged by an ACK from the
client.
 After half-closing the connection, data can travel from the server to the client and
acknowledgments can travel from the client to the server. The client cannot send any
more data to the server.

� Connection Reset: TCP at one end may deny a connection request, may abort an
existing connection, or may terminate an idle connection. All of these are done with
the RST (reset) flag.

� TCP Connection Management Modeling: The steps required establishing
and release connections can be represented in a finite state machine with the 11
states listed in Fig.

10

Fig: State transition diagram

Fig: The states used in the TCP connection management finite state machine

� TCP Sliding Window: window management in TCP decouples the issues of
acknowledgement of the correct receipt of segments and receiver buffer allocation.
For example, suppose the receiver has a 4096-byte buffer, as shown in Fig. If the
sender transmits a 2048-byte segment that is correctly received, the receiver will
acknowledge the segment.
 However, since it now has only 2048 bytes of buffer space (until the application
removes some data from the buffer), it will advertise a window of 2048 starting at
the next byte expected.
 Now the sender transmits another 2048 bytes, which are acknowledged, but the
advertised window is of size 0.
 The sender must stop until the application process on the receiving host has
removed some data from the buffer, at which time TCP can advertise a larger
window and more data can be sent.

11

Fig: Window management in TCP

� TCP Congestion Control: When the load offered to any network is more than
it can handle, congestion builds up. The network layer detects congestion when
queues grow large at routers and tries to manage it, if only by dropping packets. It is
up to the transport layer to receive congestion feedback from the network layer and
slow down the rate of traffic that it is sending into the network.

� Congestion Policies: TCP’s general policy for handling congestion is based on
three algorithms: slow start, congestion avoidance, and fast recovery.

1. Slow Start: Exponential Increase: The slow-start algorithm is based on the idea
that the size of the congestion window (cwnd) starts with one maximum segment
size (MSS), but it increases one MSS each time an acknowledgment arrives. The
algorithm starts slowly, but grows exponentially.

Fig: Slow start from an initial congestion window of one segment.
In the first round-trip time, the sender injects one packet into the network (and the
receiver receives one packet). Two packets are sent in the next round-trip time, then
four packets in the third round-trip time.

12

2. Congestion Avoidance: Additive Increase: If we continue with the slow-start
algorithm, the size of the congestion window increases exponentially.
 To avoid congestion before it happens, we must slow down this exponential
growth.
 TCP defines another algorithm called congestion avoidance, which increases the
cwnd additively.
 In this algorithm, each time the whole “window” of segments is acknowledged,
the size of the congestion window is increased by one.

Fig: Additive increase from an initial congestion window of one segment

3. Fast Recovery: The fast-recovery algorithm is optional in TCP. It starts when
three duplicate ACKs arrive, which is interpreted as light congestion in the network.
Like congestion avoidance, this algorithm is also an additive increase, but it
increases the size of the congestion window when a duplicate ACK arrives (after the
three duplicate ACKs that trigger the use of this algorithm).

� TCP Timer Management: TCP uses multiple timers to do its work. The most
important of these is the RTO (Retransmission TimeOut).
When a segment is sent, a retransmission timer is started. If the segment is
acknowledged before the timer expires, the timer is stopped.
If, on the other hand, the timer goes off before the acknowledgement comes in, the
segment is retransmitted.

The question that arises is: how long should the timeout be? Determining the round-
trip time to the destination is tricky. Even when it is known, deciding on the timeout
interval is also difficult.
 If the timeout is set too short, unnecessary retransmissions will occur, clogging
the Internet with useless packets.
 If it is set too long, performance will suffer due to the long retransmission delay
whenever a packet is lost.
 The solution is to use a dynamic algorithm that constantly adapts the timeout
interval, based on continuous measurements of network performance.
 For each connection, TCP maintains a variable, SRTT (Smoothed Round-Trip
Time) that is the best current estimate of the round-trip time to the destination in
question.

13

 SRTT according to the formula : SRTT = α SRTT + (1 − α) R (Typically, α = 7/8)
 RTTVAR (RoundTrip Time VARiation) that is updated using the formula: RTTVAR
= β RTTVAR + (1 − β) | SRTT − R | (typically β = 3/4)
 The retransmission timeout, RTO, is set to be: RTO = SRTT + 4 × RTTVAR

3. Congestion Control

If the transport entities on many machines send too many packets into the network
too quickly, the network will become congested, with performance degraded as
packets are delayed and lost.
 Controlling congestion to avoid this problem is the combined responsibility of the
network and transport layers. Congestion occurs at routers, so it is detected at the
network layer.
 However, congestion is ultimately caused by traffic sent into the network by the
transport layer. The only effective way to control congestion is for the transport
protocols to send packets into the network more slowly.

� Desirable Bandwidth Allocation
The goal is to simply avoid congestion; it is to find a good allocation of bandwidth to
the transport entities that are using the network.
A good allocation will deliver good performance because it uses all the available
bandwidth but avoids congestion, it will be fair across competing transport entities,
and it will quickly track changes in traffic demands.

Efficiency and Power: An efficient allocation of bandwidth across transport entities
will use all of the network capacity that is available.
The goodput (or rate of useful packets arriving at the receiver) as a function of the
offered load. This curve and a matching curve for the delay as a function of the
offered load are given in Fig.

Fig: (a) Goodput and (b) delay as a function of offered load.
As the load increases in Fig (a) goodput initially increases at the same rate, but as
the load approaches the capacity, goodput rises more gradually. This falloff is
because bursts of traffic can occasionally mount up and cause some losses at
buffers inside the network.
The corresponding delay is given in Fig (b) initially the delay is fixed. As the load
approaches the capacity, the delay rises, slowly at first and then much more rapidly.
This is again because of bursts of traffic that tend to mound up at high load.

14

Power will initially rise with offered load, as delay remains small and roughly
constant, but will reach a maximum and fall as delay grows rapidly. The load with the
highest power represents an efficient load for the transport entity to place on the
network.

� Regulating the Sending Rate
How do we regulate the sending rates to obtain a desirable bandwidth allocation?
The sending rate may be limited by two factors.
The first is flow control, in the case that there is insufficient buffering at the receiver.
The second is congestion, in the case that there is insufficient capacity in the
network.

Fig: (a) A fast network feeding a low-capacity receiver. (b) A slow network feeding a high-
capacity receiver.

In Fig (a), we see a thick pipe leading to a small-capacity receiver. This is a flow-
control limited situation. As long as the sender does not send more water than the
bucket can contain, no water will be lost. In Fig (b), the limiting factor is not the
bucket capacity, but the internal carrying capacity of the network. If too much water
comes in too fast, it will back up and some will be lost.

